72 research outputs found

    Estrogen receptor mutations and their role in breast cancer progression

    Full text link
    Abstract Endocrine therapy is the mainstay of treatment in estrogen receptor-positive breast cancers and significantly reduces disease recurrence and breast cancer-related mortality. However, acquired resistance to therapy has been noted in nearly one-third of women treated with tamoxifen and other endocrine therapies. Mutations in the estrogen receptor have long been speculated to play a role in endocrine therapy resistance but have been rarely detected. However, recent studies utilizing next-generation sequencing on estrogen receptor-positive, metastatic clinical samples have revealed that recurrent ESR1 mutations are far more frequent than previously thought and may play an important role in acquired endocrine therapy resistance. Here we review recent advances in detection and characterization of ESR1 mutations in advanced, endocrine therapy-resistant breast cancers.https://deepblue.lib.umich.edu/bitstream/2027.42/137677/1/13058_2014_Article_494.pd

    The lncRNA landscape of breast cancer reveals a role for DSCAM-AS1 in breast cancer progression.

    Get PDF
    Molecular classification of cancers into subtypes has resulted in an advance in our understanding of tumour biology and treatment response across multiple tumour types. However, to date, cancer profiling has largely focused on protein-coding genes, which comprise <1% of the genome. Here we leverage a compendium of 58,648 long noncoding RNAs (lncRNAs) to subtype 947 breast cancer samples. We show that lncRNA-based profiling categorizes breast tumours by their known molecular subtypes in breast cancer. We identify a cohort of breast cancer-associated and oestrogen-regulated lncRNAs, and investigate the role of the top prioritized oestrogen receptor (ER)-regulated lncRNA, DSCAM-AS1. We demonstrate that DSCAM-AS1 mediates tumour progression and tamoxifen resistance and identify hnRNPL as an interacting protein involved in the mechanism of DSCAM-AS1 action. By highlighting the role of DSCAM-AS1 in breast cancer biology and treatment resistance, this study provides insight into the potential clinical implications of lncRNAs in breast cancer

    Functional proteomics can define prognosis and predict pathologic complete response in patients with breast cancer

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>To determine whether functional proteomics improves breast cancer classification and prognostication and can predict pathological complete response (pCR) in patients receiving neoadjuvant taxane and anthracycline-taxane-based systemic therapy (NST).</p> <p>Methods</p> <p>Reverse phase protein array (RPPA) using 146 antibodies to proteins relevant to breast cancer was applied to three independent tumor sets. Supervised clustering to identify subgroups and prognosis in surgical excision specimens from a training set (n = 712) was validated on a test set (n = 168) in two cohorts of patients with primary breast cancer. A score was constructed using ordinal logistic regression to quantify the probability of recurrence in the training set and tested in the test set. The score was then evaluated on 132 FNA biopsies of patients treated with NST to determine ability to predict pCR.</p> <p>Results</p> <p>Six breast cancer subgroups were identified by a 10-protein biomarker panel in the 712 tumor training set. They were associated with different recurrence-free survival (RFS) (log-rank p = 8.8 E-10). The structure and ability of the six subgroups to predict RFS was confirmed in the test set (log-rank p = 0.0013). A prognosis score constructed using the 10 proteins in the training set was associated with RFS in both training and test sets (p = 3.2E-13, for test set). There was a significant association between the prognostic score and likelihood of pCR to NST in the FNA set (p = 0.0021).</p> <p>Conclusion</p> <p>We developed a 10-protein biomarker panel that classifies breast cancer into prognostic groups that may have potential utility in the management of patients who receive anthracycline-taxane-based NST.</p

    A novel role for TTK in homologous recombination: implications for breast cancer radiosensitivity

    No full text
    Basal-like breast cancers have the highest rates of locoregional recurrence after radiation. By correlating gene expression with early locoregional recurrence, we nominate TTK protein kinase as a mediator of radioresistance. TTK inhibition radiosensitizes in vitro and in vivo through a novel mechanism of impaired homologous recombination and represents a promising translational strategy

    Molecular Signatures of Radiation Response in Breast Cancer: Towards Personalized Decision-Making in Radiation Treatment

    No full text
    Recent advances in gene expression profiling have allowed for a more sophisticated understanding of the biology of breast cancers. These advances led to the development of molecular signatures that now allow clinicians to more individually tailor recommendations regarding the utility and necessity of systemic therapies for women with breast cancer. Indeed, these molecularly based tests have been incorporated into national and international best practice guidelines and are now part of routine practice. Similar, though slower, progress is being made in the development of molecular signatures predictive of radiation response and necessity for women with breast cancer. This article will discuss the history of radiation response signature development, the current state of these signatures under ongoing clinical development, the barriers to their clinical adoption, and upcoming changes and opportunities that may allow for the personalized radiation treatment recommendations enabled by the development of these signatures
    corecore